Kerület (geometria)



A geometriában kerület alatt a kétdimenziós alakzatokat határoló vonal hosszát értjük. Jelentheti magát a határoló vonalat is, például a „kerület mentén” kifejezésben.

A kerületet magyarul \({\displaystyle K}\)-val rövidítjük.

Bizonyos képletekben (például a Hérón-képletben) hasznosabb, ha a kerület felét, a félkerületet jelöljük betűvel. A félkerület jele a latin semi- (fél-) előtag alapján az \({\displaystyle s}\).

Tartalomjegyzék

Gyakorlati jelentősége


A kerület fogalma sokszor előkerül a hétköznapi életben is. Például egy telek körbekerítéséhez szükséges kerítés hosszát a telek kerülete adja meg. Egy gördülő kerék egyetlen fordulat alatt annyi utat tesz meg, mint amekkora a keresztmetszetének a kerülete.

Kiszámítása


A sokszögek kerülete egyenlő az oldalak hosszának összegével.

\({\displaystyle K=a+b+c+\ldots }\)

Határértékszámítás segítségével a sokszögek kerületének definíciójából kiindulva görbe vonalakkal határolt alakzatoknak is meghatározhatjuk a kerületét. Ennek elméleti módszere a következő:

A határoló vonalat pontokkal részekre osztjuk, a pontokat megfelelő sorrendben összekötjük egy-egy szakasszal, majd kiszámítjuk a kapott sokszög kerületét. Ezután még több ponttal osztjuk fel a határoló vonalat, aztán még többel és még többel, közben ügyelve arra, hogy a segédsokszög leghosszabb oldalának hossza nullába tartson. Ha a segédsokszögek kerületének sorozata konvergens, akkor a kerületsorozat határértékét tekintjük az alakzatunk kerületének.

Kör

Mivel minden kör hasonló, a kerület egyenesen arányos a kör átmérőjével. Ezt a hasonlósági arányt \({\displaystyle \pi }\)-nek nevezték el:

\({\displaystyle K=d\cdot \pi =2r\pi }\)

ahol \({\displaystyle d}\) a kör átmérője, \({\displaystyle r}\) pedig a sugara.

Ennek a \({\displaystyle \pi }\) számnak a meghatározására használható a feljebb említett módszer, azaz a körvonal felosztása és a keletkező sokszög kerületének számítása, amit az egyszerűség kedvéért általában szabályos sokszögekkel végeznek.

Bonyolultabb alakzatok

Bonyolultabb alakzatok kerületének kiszámítása integrálással végezhető, ami szintén a fent említett felosztásos módszeren alapszik. Olyan alakzatokat is lehet definiálni, amelyeknek a kerülete végtelen. Ilyen például a Koch-görbe, egy hópehely formájú fraktál. tehát a+b+c... vonal így kell kiszámítani

Kapcsolódó szócikkek





Kategóriák: Abszolút geometria


Dátum: 02.04.2021 07:41:51 CEST

Eredet: Wikipedia (Szerzői [Laptörténet])    Lizenz: CC-BY-SA-3.0

Változtatások: Az összes képet és a hozzájuk kapcsolódó legtöbb látványelemet eltávolítottuk. Néhány ikont a FontAwesome-Icons váltotta fel. Néhány sablont eltávolítottak (például „a cikk kibővítéséhez szükséges”) vagy hozzárendelte (mint például „hatjegyek”). A CSS osztályokat vagy eltávolították, vagy harmonizálták.
A Wikipedia-tól olyan linkeket, amelyek nem vezetnek cikkhez vagy kategóriához (mint például a „Redlinks”, „a szerkesztési oldalra mutató linkek”, „a portálok linkjei”), eltávolították. Minden külső linkhez tartozik egy további FontAwesome-Icon. Néhány apró változtatás mellett a médiatartályt, a térképeket, a navigációs dobozokat, a beszélt verziókat és a geomikroformátumokat eltávolítottuk.

Felhívjuk figyelmét: Mivel az adott tartalmat az adott időpontban automatikusan a Wikipedia veszi, a kézi ellenőrzés volt és nem lehetséges. Ezért a nowiki.org nem garantálja a megszerzett tartalom pontosságát és aktualitását. Ha van olyan információ, amely pillanatnyilag hibás, vagy pontatlan a képernyő, akkor nyugodtan lépjen kapcsolatba velünk: email.
Lásd még: Jogi nyilatkozat & Adatvédelmi irányelvek.