Newton-féle gravitációs törvény



A Newton-féle gravitációs törvény szerint bármely két test kölcsönösen vonzza egymást. Két pontszerűnek tekinthető test között ez az erő egyenesen arányos a tömegek szorzatával, és fordítottan arányos a köztük lévő távolság négyzetével.

Newton a tapasztalati megfigyelésekből indukcióval levezetett összefüggést arányosság formájában fogalmazta meg[1] és a Philosophiae Naturalis Principia Mathematica művében publikálta 1687. július 5-én. Amikor a Royal Society előtt bemutatta könyvét, Robert Hooke azt állította, hogy Newton tőle vette át az inverz négyzetes törvényt.

A klasszikus mechanikában ma használt összefüggés szerint a két pontszerű test közötti erőhatás a két testet összekötő egyenes mentén hat és nagysága:

\({\displaystyle F=G{\frac {m_{1}m_{2}}{r^{2}}}\ }\)

ahol:

SI-mértékegységrendszer ben a mértékegységek:

Newton maga nem írta fel így ezt az összefüggést, nem vezette be és nem is mérte meg a G értékét. Henry Cavendish brit fizikus 1798-ban állított össze először egy olyan kísérleti elrendezést, ami alkalmas lehetett a gravitációs állandó értékének meghatározására[3]

A Newton-féle gravitációs törvény formailag hasonlít a Coulomb-törvényhez, mely két töltött részecske közötti elektromos erőhatásról szól. Mindkettő inverz négyzetes törvény, ahol az erő fordítottan arányos a távolság négyzetével.

A gravitáció jelenségének - az extrém sűrű és nagy tömegek esetén is érvényes - általánosabb leírását Albert Einstein általános relativitáselmélete adja, de a gyenge kölcsönhatások és a kis sebességű mozgások esetén a Newton-féle leírás is jól használható. Az általános relativitáselmélet határesetként visszaadja a Newton-féle gravitációs törvényt.

Tartalomjegyzék

Térbeli kiterjedésű testek esete


Ha a gravitáció kiszámításánál nem tekinthetünk el attól, hogy a vizsgált testek térbeli kiterjedésűek, azaz nem tekinthetjük őket pontszerűnek, akkor a testek között ébredő gravitációs erőt vektori összegzéssel, a teljes testre kiterjesztett integrálással kell kiszámolni.[4]

A Föld teljes gravitációs erőtere jó közelítéssel gömbszimmetrikus, de egy szobányi térrészben párhuzamos erővonalakkal leírható homogén erőtérnek is tekinthetjük

Problémák a Newton-féle elmélettel


Newton leírása a gravitációról elegendően pontos a legtöbb gyakorlati esetben, és ezért széles körben használják. Az eltérés kicsi, ha a dimenzió nélküli mennyiségek, φ/c2 és (v/c)2 jóval kisebbek mint 1, ahol a φ a gravitációs potenciál, a v, a tárgy sebessége, c, a fény sebessége.[5]

Például, a Newton-féle gravitációs törvény elegendően pontos leírást ad a Föld/Nap rendszerről: \({\displaystyle {\frac {\Phi }{c^{2}}}={\frac {GM_{\mathrm {sun} }}{r_{\mathrm {orbit} }c^{2}}}\sim 10^{-8},\quad \left({\frac {v_{\mathrm {Earth} }}{c}}\right)^{2}=\left({\frac {2\pi r_{\mathrm {orbit} }}{(1\ \mathrm {yr} )c}}\right)^{2}\sim 10^{-8}}\)

ahol rorbit a Nap körül keringő Föld keringési sugara.

Azokban az esetekben, amikor a dimenzió nélküli paraméterek nagyok, az általános relativitáselmélet írja le jobban a rendszert. Kis gravitációs erők és sebességek esetében az általános relativitáselmélet a Newton-féle gravitációs törvényre egyszerűsödik le, ezért azt szokták mondani, hogy a Newton-féle törvény az általános relativitáselmélet kis gravitációkra érvényes határesete.

Irodalom


Kapcsolódó szócikkek


Külső hivatkozások


Jegyzetek


  1. Isaac Newton: "In [experimental] philosophy particular propositions are inferred from the phenomena and afterwards rendered general by induction": "Principia", Book 3, General Scholium, at p.392 in Volume 2 of Andrew Motte's English translation published 1729.
  2. http://physics.nist.gov/cuu/Constants/Preprints/lsa2010.pdf
  3. The Michell-Cavendish Experiment Archiválva 2017. szeptember 6-i dátummal a Wayback Machine-ben, Laurent Hodges
  4. - Proposition 75, Theorem 35: p.956 - I.Bernard Cohen and Anne Whitman, translators: Isaac Newton, The Principia: Mathematical Principles of Natural Philosophy. Preceded by A Guide to Newton's Principia, by I.Bernard Cohen. University of California Press 1999 ISBN 0-520-08816-6 ISBN 0-520-08817-4
  5. Misner, Charles W.. Gravitation. W. H.Freeman and Company (1973). ISBN 0-7167-0344-0  Page 1049.

Fordítás





Kategóriák: Klasszikus mechanika | Gravitáció


Dátum: 29.03.2021 03:52:22 CEST

Eredet: Wikipedia (Szerzői [Laptörténet])    Lizenz: CC-BY-SA-3.0

Változtatások: Az összes képet és a hozzájuk kapcsolódó legtöbb látványelemet eltávolítottuk. Néhány ikont a FontAwesome-Icons váltotta fel. Néhány sablont eltávolítottak (például „a cikk kibővítéséhez szükséges”) vagy hozzárendelte (mint például „hatjegyek”). A CSS osztályokat vagy eltávolították, vagy harmonizálták.
A Wikipedia-tól olyan linkeket, amelyek nem vezetnek cikkhez vagy kategóriához (mint például a „Redlinks”, „a szerkesztési oldalra mutató linkek”, „a portálok linkjei”), eltávolították. Minden külső linkhez tartozik egy további FontAwesome-Icon. Néhány apró változtatás mellett a médiatartályt, a térképeket, a navigációs dobozokat, a beszélt verziókat és a geomikroformátumokat eltávolítottuk.

Felhívjuk figyelmét: Mivel az adott tartalmat az adott időpontban automatikusan a Wikipedia veszi, a kézi ellenőrzés volt és nem lehetséges. Ezért a nowiki.org nem garantálja a megszerzett tartalom pontosságát és aktualitását. Ha van olyan információ, amely pillanatnyilag hibás, vagy pontatlan a képernyő, akkor nyugodtan lépjen kapcsolatba velünk: email.
Lásd még: Jogi nyilatkozat & Adatvédelmi irányelvek.